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LETTER TO THE EDITOR 

Interface method for the antiferromagnetic three-state 
Potts model on a square lattice? 

T Temesvlri 
Institute for Theoretical Physics, Eotvos University, H-1088 Budapest, Puskin U 5/7, 
Hung a r y 

Received 28 June 1982 

Abstract. A generalised version of the interface method of Muller-Hartmann and Zittartz 
is applied to the three-state square lattice Potts antiferromagnet in a negative field. The 
phase boundary is found to go to zero temperature in the limit of zero magnetic field. 

The interface method developed by Muller-Hartmann and Zittartz (1977) has turned 
out to be a very precise approximation for calculating the phase boundary of Ising 
models with ferromagnetic, antiferromagnetic and even competing interactions on the 
square lattice (Muller-Hartmann and Zittartz 1977, Burkhardt 1978, Hornreich et a1 
1979, Kroemer and Pesch 1982). The method has been extended and applied to the 
triangular Ising antiferromagnet (Lin and Wu 1979, D6czi-RCger and Hemmer 1981) 
and the limits of its applicability have also been investigated by Lin and Wu (1979) 
who found that only a generalised version could be applied to systems like the Potts, 
eight-vertex and Ashkin-Teller models. 

In this letter we study the antiferromagnetic three-state Potts model on a square 
lattice in the presence of a magnetic field defined by the Hamiltonian 

where the first sum runs over all nearest-neighbour pairs and the second over all the 
lattice sites. Si = -1,O, +1 is one of the three states and &,si is the Kronecker delta 
function. The interaction energy J is positive and we restrict ourselves to a negative 
field h < 0. In this case the Si 7 0 state is energetically unfavourable and the system 
has the double degenerate ground state of an Ising antiferromagnet. 

Because of the simple ground state properties, the method of Muller-Hartmann 
and Zittartz can be easily applied. The interface free energy U is defined by 

where a periodic boundary condition is taken in the horizontal direction and ZI (ZH) 
is the partition function with different (the same) boundary conditions at the bottom 

t A preliminary version of this work has been presented at the Ninth International Seminar on Phase 
Transitions and Critical Phenomena. April 13-5, 1982, Vienna, Austria. 
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Figure 1. Typical interface configurations for the three-state antiferromagnetic Potts model 
in a negative field. ( a )  h = -a; ( b )  h is finite; (c) -h << J.  

and on the top of the system (see figure 1). The lattice consists of N columns. The 
critical condition is determined by cr = 0 since the interface free energy becomes zero 
at a continuous phase transition. Like Miiller-Hartmann and Zittartz (1977), we 
approximate Zr by considering only a special class of configurations with a single 
interface crossing each column just once. Typical cases are shown in figure 1 for three 
different values of the field. When h = ---CO the Potts model becomes just the king 
antiferromagnet without any magnetic field, and in this case the interface method 
gives the exact (+ and T, (Miiller-Hartmann and Zittartz 1977). In a finite field, spins 
in the state 0 will appear at the interface to destroy some of the ferromagnetic bonds. 
In the limit -h K.J all the ferromagnetic bonds along the interface are removed by 
turning a spin on one chosen sublattice into the state 0 (see figure 1 (c)). We note 
that without taking into account configurations just described we would get a phase 
boundary independent of the field, obviously an incorrect result. 

The interface method has been applied recently by Selke and Pesch (1982) to the 
case of the ferromagnetic three-state Potts model without magnetic field. This system 
has a triple degenerate ground state and its interface properties are quite different 
from those in the antiferromagnetic case. In Selke and Pesch's approach, spins in the 
third state appear in domains between the two ordered phases, thus giving rise to a 
gain in entropy but not in energy. 

Before going into the details of the calculation, let us consider some problems 
concerning the phase boundary of our model. The partition function of the three-state 
antiferromagnetic Potts model is known exactly in a limiting case. If the temperature 
and magnetic field approach zero while their ratio R = kT/h remains finite, the 
partition function becomes 

where the prime means that configurations are restricted to those without nearest- 
neighbour spins in the same state and No is the number of spins in the state 0. Equation 
(2) is a special case of the three-colouring problem that was solved exactly by Baxter 
(1970) who found a continuous transition at the activity eR-' = 1. That means the 
phase boundary must go to zero temperature with an infinite slope as h approaches 
zero. Of course, this does not exclude the possibility of one or more transition 
temperatures in zero field as proposed by Grest and Banavar (1981) and Cardy (1981), 
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following a suggestion by Berker and Kadanoff (1980) that a system with sufficiently 
complex macroscopically degenerate ground state, like the three-state Potts model 
on d-dimensional hypercubic lattices, may have a finite-temperature transition from 
a paramagnetic to a massless phase. Using the phenomenological renormalisation- 
group method Nightingale and Schick (1982), however, came to the conclusion that 
zero is the only transition temperature. This was confirmed by a Monte Carlo 
renormalisation-group calculation made by Jayaprakash and Tobochnik (1982). That 
suggests a phase diagram like that displayed in figure 2(a) .  The interface method of 

(a1 

Figure 2. (a) Expected phase boundary for the three-state antiferromagnetic Potts model 
on a square lattice in a negative field (full line). The broken line could be obtained by 
the interface method in finite field. Its slope at T = 0 was calculated in the text. ( 6 )  Phase 
boundary of the triangular king antiferromagnet. The infinite slope of the full line at 
T = 0 was argued to be exact by Kinzel and Schick (1981), while the broken line was 
obtained by the interface method (D6czi-RCger and Hemmer 1981). 

the present letter supports the result of Nightingale and Schick (1982) and Jayaprakash 
and Tobochnik (1982), providing a phase boundary that goes to zero temperature, 
as h + 0-, with the slope 

R = k T / h  =-1.113. (3) 
The finiteness of R seems to be the consequence of the approximation of taking into 
account only special interface configurations in computing ZI. The situation is quite 
similar to the case of the triangular Ising antiferromagnet. Both models have a 
macroscopically degenerate ground state in zero magnetic field. T, is exactly known 
to be zero in the Ising system (Houtappel 1950) and, according to scaling arguments 
(Kinzel and Schick 1981), the slope of the phase boundary is infinite (see figure 2(b)). 
The interface method, however, gives a finite slope (Dbczi-RCger and Hemmer 1981). 

Finally, we proceed to compute our result for R (equation (3)) using the transfer 
matrix method. Because of the calculational difficulties, we confine ourselves to the 
limit -h << J. In that case 

where ki is the number of spins in the state 0 belonging to the ith column and the 
factor 2 arises because of the two sublattices. In order to define the transfer matrix, 
we describe a configuration by the numbers {ni} = {nl, n2, . . . , nN}, where ni defines 
the place of the interface in the ith column with respect to the reference interface 
(figure 3). There is a danger of overcounting, since for a given configuration the 
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Figure 3. ( a )  The reference interface {n i }={ l ,  0, l,O, 1,0, 1, O}. ( b )  The configuration 
{nJ={3,  -2, -3 ,0,3,  -2,1,0}. 

interface lines can be drawn in 2N ways. If ni is defined to be even (odd) for i even 
(odd), then the overcounting is avoided (see example on figure 3(6) ) .  It should be 
stressed that J is missing from (4) since all the ferromagnetically ordered bonds have 
been removed. ki depends not only on ni but on niW1 and niil as well, so we have 
actually a three-body interaction problem. We refer to figure 4 where ki (ni-1, ni, ni+d 
is given explicitly for the two basic situations. The transfer matrix T can be defined 
by 

and then 

Tnl.nZ:n3.n4 = expb  (kz + ks)/kTI, 

ZI = 2 Tr{T”’}. 

Using equation (l), 

U=-$kTlnA 

where A is the largest eigenvalue of T. Here the obvious fact that ZH = 1 has been used. 

i-1 i i+l i -1 i i+l  
(a1 (6) 

Figare4. Thenumberofspins kiinthestateOforthetwobasiccases. (a )2k i=(n i+1-n i - l ( ;  
( 6 )  2ki =max{lni+l-nil; Ini-ni-ll}+l. 
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Our aim is to find an eigenvector of T consisting only of positive elements. Then 
it follows from the Perron-Frobenius theorem that the corresponding eigenvalue must 
be the largest one. Inspecting the form and the symmetries of T suggests the following 
sum as an eigenvector: 

m 

f = c 4 1  
I = 1  

with 

Wnl,n2 = expCUh/2kT)\nl- n~\3 ,  I = 1,2 ,3  , . . . 
The effect of T on f~ can be obtained by a straightforward but somewhat tedious 
calculation 

(6) 
where the coefficients c as functions of h/kT were explicitly computed. Putting ( 5 )  
into the eigenvalue equation Tf = Af and using (6), the following equations for A and 
the uI are derived: 

Tfi = cl,J1+ C Z , I ~ Z  + cl+z,lfi+z 

Making use of the simple recursion relation of the last row, only two of the equations 
remain: 

where 
I 1 

j - 1  j-1 
A I =  ll czj+l,zj-l, BI II c~j+2,2j, I = l , 2 , 3  ,.... 

From (7) (which was solved by using a computer for several values of h/kT)  we get 
an eigenvector f with positive elements only. Thus the corresponding eigenvalue A 
can be used to calculate the interface free energy U, and the critical condition (3) 
comes from setting U = 0 (A = 1). 

I would like to thank Z RAcz €or a critical reading of the manuscript and many valuable 
comments. Useful discussions with J D6czi-Rtger, W Pesch, W Selke and T Vicsek 
are also acknowledged. 
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